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Abstract

Contract carriers in the trucking industry are known to offer shippers a per mile rate that

decreases stepwise as the shipper’s route lengthens, with a mileage band designated for each

rate. While the use of quantity-based pricing discounts in supply chains has been well studied,

there has been no research on how shippers should route under such a pricing scheme or how

carriers should set such bands. In this paper, we provide methods for both. Route construction

is complicated by the fact that the per mile rate cannot be determined until after the route has

been created. With this consideration, we develop a model of this problem and then an algorithm

for solving it that assists the shipper in constructing the lowest cost route. It is beneficial for the

shipper to extend the length of certain routes to incur a lower per mile cost, and we find that

most of these routes can be constructed to equal any mileage required to receive the lower rate.

As an extended route generates unnecessary expense and energy use for the carrier, theoretical

and analytical insights provide guidelines for a carrier to use in developing better mileage bands.

These guidelines assist a carrier in constructing bands that maximize profit and minimize the

cost associated with a shipper extending a route.

Keywords: Transportation; pricing; Traveling Salesman Problem; mileage bands

1. Introduction

Within the trucking industry, contract carriers use a variety of pricing schemes, typically

utilizing rates proportional to distance and weight or volume. Another pricing practice involves

the use of mileage bands. Mileage bands segregate route distances into windows, with the rate

per mile (generally) decreasing as the mileage increases. For example, the rate for a route within

the band of 500 to 599 miles may be $1.65 per mile, decreasing to $1.60 per mile for a route

in the band of 600 to 699 miles. These rates are not marginal, rather they are applied to the

mileage of the entire route. This rate scheme incentivizes a shipper to use the trucking company

for more of their transportation needs, while allowing the trucking company to distribute the

fixed costs associated with a route (e.g. cost of the truck, insurance, license, etc.) over a longer

distance (Forkenbrock, 1999). Discussions with shippers have indicated that mileage bands are
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Lower

bound

Upper

bound
$/mile

Percentage

decrease

1900* 1999 1.514 -

2000 2099 1.456 3.83%

2100 2199 1.404 3.57%

2200 2299 1.375 2.07%

2300 2399 1.353 1.60%

2400 2499 1.332 1.55%

2500 2599 1.313 1.43%

2600 2699 1.296 1.29%

2700 2799 1.28 1.23%

2800 UP 1.265 1.17%

Table 1: Mileage band rates utilized by a trucking firm. *Any mileage below 1900 pays an additional penalty per

mile for the difference between actual mileage and 1900.

found in settings where a shipper contracts a trucking company for dedicated use. With more

trucking companies focusing on providing dedicated service (Smith, 2017), an increase in the

use of mileage bands may be expected. An executive with a transportation solutions provider

states, “we have a few shippers today that have that kind of rating structure. I would venture to

say that the carrier/shipper negotiations are starting to get more creative in this regard.” After

completing service over a fixed time period, often one week, the trucking company calculates

the total distance traveled for a specific shipper to determine which mileage band this distance

falls within. This research was initially motivated by a company whose transportation provider

utilizes the rates shown in Table 1. This company contracts out all transportation needs for a

network of over 2,000 North American retail locations that generate over $100 billion in revenue.

While some contract carriers in the trucking industry use mileage bands to price routes, research

has widely ignored this practice.

This pricing scheme is of interest to both trucking companies and their customers. Forken-

brock (1999) discuss the transportation tapering principle, showing that the per mile operating

costs incurred by a trucking company decrease with an increase in the length of the haul. Based

on this principle, the per mile profit of a carrier using mileage bands does not necessarily de-

crease proportionately to the lower per mile rate they offer their shippers at longer distances.

This draws more business from the shipper and creates a customer service. However, a shipper

whose route distance falls just short of a bound is incentivized to adjust the route such that

the distance is extended and they qualify for a lower per mile rate. They may enforce these

adjustments by dictating a route be visited in an order that leads to the desired distance. While

beneficial to the shipper, such longer, suboptimal routes have a detrimental impact on both the

carrier and the environment. Energy is expended unnecessarily and, depending on the associated
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costs, the carrier may generate less profit.

This paper is the first, to our knowledge, to focus on the mileage band pricing scheme, and

it looks at the scheme from both a shipper and carrier’s perspective. From the perspective of

the shipper, we define a new problem, the Traveling Salesman Problem with Mileage Bands. We

propose a new algorithm to solve this problem, by which a shipper may adjust the order of stops

on a route to achieve the lowest cost based on mileage band pricing. Through this algorithm,

we find that most routes with even a single digit number of stops can be adjusted to match

any reasonable bound on distance, such that a shipper can easily create a route that incurs the

lowest possible cost for them. From the perspective of the carrier, a set of theoretical guidelines

outline how they may establish mileage bands that maximize profit or limit the likelihood a

route is extended by a shipper. We present an algorithm that generates a set of mileage bands

that maximize profit and minimize the cost associated with route extension. This algorithm

provides several managerial insights that can assist a carrier in developing mileage bands that

are most appropriate for their needs.

This paper is organized as follows. Section 2 places this work into the context of non-

linear cost functions and quantity discounts within the supply chain realm. Section 3 presents

the problem from the perspective of the shipper, with an algorithm that finds the route that

minimizes his or her cost. Section 4 focuses on the carrier perspective, presenting theoretical

and numerical insights into how a carrier may best select mileage bands to maximize profit.

Finally, Section 5 provides conclusions and opportunities for continuing research in this area.

2. Literature Review

In most routing problems, the cost of a route is determined by converting the distance

traveled on the route into a monetary or time cost, with this cost generally increasing linearly

with distance (Toth & Vigo, 2001). Literature has also focused on transportation problems with

both convex and nonconvex piecewise linear costs. However, all of this research utilizes variable

costs over route segments or based on the volume or weight transported. There exists a gap

in transportation-focused research, with little consideration for costs dependent on total route

length, as required when using mileage bands.

The modeling component of this work is most closely related to the network flow problem

where the cost of traveling on each arc is piecewise linear relative to the flow on the arc or

the distance of the arc. This problem is formulated as a multi-objective, multi-modal, multi-

commodity flow problem with time windows and concave costs by Chang (2008), where the cost

on each route segment is dependent on the flow over that segment. Croxton et al. (2003) and

Croxton et al. (2007) provide structural observations on several formulations of the problem

with flow dependent costs. The transportation tapering principle of Forkenbrock (1999) is

incorporated into a supply chain design model by Vieira et al. (2015), who use a continuous

correctional factor to decrease the cost of a route segment as the distance increases. However,
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the piecewise linearity of these costs is a function of each individual segment, such that the cost

is only a function of the flow on that segment, not the total flow through the network. With

mileage bands, the cost associated with traveling over any segment can only be determined when

the entire route is constructed.

Research also considers a broader perspective on economies of scale using the volume or

weight of shipments moving through a network. Baumgartner et al. (2012) account for a wide

range of supply chain related costs, including product cost, transport cost, tank rental cost,

tank throughput cost, and inventory cost, and how these costs vary dependent on the volume

of product being stored or transported. Moccia et al. (2011) present a multimodal network

with consolidation that uses piecewise linear costs to model the fixed costs that may be shared

through the combination of loads. Klincewicz (1990) solve a similar problem in using piecewise

linear transportation costs based on volumes to decide whether to ship a product directly or via

a consolidation terminal. The facility location problem is well known for utilizing techniques as-

sociated with economies of scale, where the costs associated with opening a facility are piecewise

linear with the size of the facility or the volume of product moving through the facility. Holm-

berg (1994), Holmberg & Ling (1996) and Wollenweber (2008) used staircase shaped costs to

represent the varying production levels at facilities that are under consideration in the problem.

Considering both facility location and routing in network design creates a richer problem,

with past research applying piecewise linear costs to one or both components. Lapierre et al.

(2004) introduce a hybrid metaheuristic to determine the number and the location of trans-

shipment centers as well as the best transportation alternative - less than truckload (LTL), full

truckload (FTL), Parcel, or own fleet - on each segment, with piecewise linear costs based on

which alternative is used and the shipment weight or volume. Similarly, Klincewicz (2002) use

piecewise linear costs dependent on volume on each arc to determine the location of transporta-

tion hubs and how to direct flow through the resulting network. Melechovskỳ et al. (2005) solve

the location-routing problem with non-linear piecewise costs associated with opening a depot

and the corresponding flow passing through. We again highlight that the costs associated with

these problems are known during construction of the solution, while with a mileage band pricing

scheme the cost is unknown until a route or set of routes are completed.

Most closely related to a mileage band pricing scheme is the concept of volume quantity

discounts (Dolan, 1987, Kohli & Park, 1989, Weng, 1995, Güder & Zydiak, 1997). This topic

has been extensively covered from the perspective of marketing, manufacturing and economics.

However, while ordering greater quantities results in increased holding costs, this is generally

viewed as a favorable policy for both parties given that the buyer has a tangible increase in

product on hand, while the seller should see increased profits. In the case of mileage discounts,

extending the route does not necessarily have these same tangible benefits. Ultimately, addi-

tional resources are being used to execute the same route. While the shipper sees a reduction

in cost, the carrier generally does not have an incentive to extend the route. The results pre-
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sented in this paper may inform research on quantity discounts, but the perspective on the two

problems is quite opposite.

3. Shipper Focused Route Optimization

In the traditional traveling salesman problem (TSP), a vehicle departs from a depot to visit

a set N of stops over a period of time, with an objective of minimizing a cost function, most

commonly associated with distance traveled. When costs are determined using mileage bands,

this objective may vary depending on perspective. Assuming that the rate per mile decreases as

the mileage increases between bands, the objective of the carrier is to minimize route distance.

A route at this distance is within the band with the greatest possible rate per mile that may

be collected from the shipper, while it also minimizes the costs that the carrier may incur while

executing the route. However, from the perspective of the shipper, a solution where the route

distance is minimized is not necessarily optimal. A route with a length that is close to the upper

bound of a mileage band is more expensive than a longer route in the next mileage band, and the

shipper has a financial incentive to extend the route. For this section, we solve the problem from

the perspective of the shipper, such that cost, rather than distance, is minimized. We present a

formulation for a modified TSP, a algorithm to quickly solve this model, and numerical results

from testing the algorithm.

3.1. Traveling Salesman Problem with Mileage Bands

We consider the problem of finding the lowest cost route given that the rate per mile decreases

between mileage bands as the route length increases. This is modeled over a network where

every node N in the network must be visited, and we assume that the graph is complete. Let S

represent the set of mileage bands, with Bs representing the lower bound for band s ∈ S and Rs

representing the rate per mile for band s (note that B0 = 0 and B|S|+1 = M , where M is a very

large number, in all cases). We assume the bounds on the mileage bands are such that the total

route cost at the bounds increases as the bands increase, or RsBs < Rs+1Bs+1 for all s ∈ S. In

this way, the route cannot be continuously extended to decrease cost. The variable xij is 1 if

the vehicle travels from node i to j and is 0 otherwise, while dij represents the distance traveled

between the two nodes. Then, the variable xs is the total distance traveled, if that distance falls

within mileage band s, where xs > 0 only if Bs ≤ xs < Bs+1. The binary variable ys takes a

value of 1 if xs falls within the bounds of band s and is 0 otherwise. We may then minimize the

cost for the shipper using the following formulation:

minimize
∑
s∈S

Rsxs

subject to ∑
i∈N,i6=j

xij = 1 ∀j ∈ N (1)
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∑
j∈N,i6=j

xij = 1 ∀i ∈ N (2)

∑
i,j∈N

dijxij =
∑
s∈S

xs (3)

Bsys ≤ xs < Bs+1ys ∀s ∈ S (4)∑
s∈S

ys ≤ 1 (5)

∑
i,j∈Q

xij ≤ |Q| − 1 ∀Q ⊆ N (6)

xij ∈ {0, 1} ∀i, j ∈ N, (7)

xs ≥ 0 ∀s ∈ S (8)

ys ∈ {0, 1} ∀s ∈ S (9)

The objective function minimizes routing cost for the total route distance xs at the per mile

rate of Rs for band s. Constraints (1) and (2) require that the route visits each node in N once.

Constraint (3) sums the distances of all segments traveled to determine the total route distance.

Constraints (4) bound the total route distance within the appropriate band. Constraint (5)

limits the solution to only one band. Constraints (6) are the subtour elimination constraints.

3.2. Bounded TSP Algorithm

As there are no existing algorithms for the problem we study in this paper, the algo-

rithm we present is new. Fundamentally, the algorithm iteratively solves a sequence of TSPs

wherein the distance traveled is bounded from below. As such, we presume the existence of a

computationally-efficient TSP solver, many of which are available (Applegate et al., 2006, Fuji-

moto & Tsutsui, 2010, Sengoku & Yoshihara, 1998), to solve problem instances of the size that

a freight carrier may experience (generally fewer than 100 stops in a week). We first introduce

the mileage break, a metric similar to the weight break used with a pricing scheme based on

mass. This is the distance within a band at which the cost of the route is equivalent to the cost

of a route at the lowest bound of the next mileage band. For example, suppose the per mile

rate for a route of 900-999 miles is $1.50 per mile and the rate for a route of 1000-1099 miles is

$1.45 per mile. The mileage break for the 900-999 band is 1,000∗$1.45
$1.50 = 966.7 miles. The cost of

any routes within this band greater than 966.7 miles may potentially be decreased by extending

the route to the next band. We define the mileage break for band s as Ys = Bs+1Rs+1

Rs
.

Algorithm 1 provides the pseudocode used to solve this problem. We first find a solution to

the TSP using the unaltered CPLEX TSP solver and determine the distance of the minimum

length route, D∗, with no consideration for mileage bands. The mileage band, s, for distance

D∗ is determined. If this distance is less than the mileage break for that band, Ys, the route is

optimal for the shipper as the cost cannot be decreased. However, if the distance is greater than
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Ys, we use a modified version of the CPLEX TSP solver. We add a constraint to the solver that

bounds the TSP such that the length of the new solution, D′, must be greater than or equal to

the bound on the next mileage band, Bs+1. The bounded TSP is solved and the distance of the

new solution is D′. If the new distance is less than or equal to the mileage break of this band,

D′ ≤ Ys+1, and if the new route length results in a decrease in cost, such that RsD
∗ > Rs+1D

′,

this route is optimal for the shipper. If the cost is greater, then D∗ is optimal. However, if

D′ > Ys+1, then there may be a lower cost solution in the next band. This cycle may continue

as long as the cost of the original route is greater than the cost at the mileage break of successive

bands, such that RsD
∗ > Rs+iYs+i for any band i ≥ 0. A narrow band and large change in Rs

between bands are required for a scenario where a route will be extended beyond the next band,

but we include this here for completeness.

Algorithm 1 Bounded TSP

Solve TSP for unbounded problem to find a solution, Z, with the shortest route length, D∗.

Determine band s for length D∗ and corresponding mileage break Ys.

if D∗ ≤ Ys then

Return Z.

else if D∗ > Ys then

Set J = RsD
∗ and iterator i = 0.

while RsD
∗ > Rs+iYs+i do

Add constraint D′ ≥ Bs+1+i to TSP.

Solve bounded TSP to find optimal solution, Z ′, with route length D′. If no solution

exists, return Z.

Set J ′ = Rs+1+iD
′.

If J ′ ≤ J , then set Z = Z ′.

if D′ ≤ Ys+1+i then

Return Z.

else if D′ > Ys+1+i then

Increment i.

end if

end while

Return Z.

end if

If we assume that there is only the bound B0 = 0 on the IP formulation, this is the traditional

TSP, equivalent to the first component of Algorithm 1. If a non-zero bound is introduced, the

solution to the IP formulation is either the shortest unbounded route or the lowest cost route

greater than the bound, dependent on which has the lowest cost. This is equivalent to Algorithm

1 for all bounds, such that we may now use the algorithm to determine the optimal route to
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achieve the lowest cost for a shipper.

3.3. Numerical Analysis

The algorithm is evaluated using the symmetric set of the well known TSPLIB cases (Reinelt,

1991). Trucking companies often use a one week time frame to determine the total distance that

a vehicle traveled on a route for a shipper. Over a five day week, it is unlikely that a truck

will be able to make more than 15 stops per day. Based on the transportation context of this

problem, only those instances with fewer than 76 stops are tested. Of the TSPLIB cases, this

leaves 19 unique instances ranging from 14 to 76 stops. For those instances where the optimal

distance is greater than 6000, all distances are divided by ten. It is extremely rare for a driver

to travel over 6000 miles, even in a week, and it is unlikely that a trucking firm would have

mileage bands that extend to this distance. The TSP solver found in the CPLEX library (IBM

(2012)) is modified for this algorithm based on ease of use and adaptability. Each instance is

solved using CPLEX 12 (IBM, 2009) on a cluster of machines with 8 Intel Xeon CPUs running

at 2.66 GHz with 32 GB RAM with a processing time limit of three hours.

The bands may be arbitrarily defined for these instances. Moving the bounds on a band

will bring some route lengths closer to the upper bound and move some into the lower end of a

band. We would like to determine the magnitude of savings relative to the change in cost per

mile and where the route length falls within the band. With a sufficiently narrow band and a

diverse set of instances, any initial bound should provide a description of how the bands impact

savings. As 100 miles is used in industry as a band width, we set the bounds every 100 miles

beginning with the first bound at 0.

For the results presented here, the per mile rates from Table 1 are used as these provide a

range of realistic values. The percentage decrease in rate from band s to s+ 1 is Ps = Rs−Rs+1

Rs
.

Table 2 presents the percentage decrease in cost for those instances where savings could be

found through route extension. These values are calculated as Rs∗D∗−Rs+1D′

Rs∗D∗ > 0, using each

Rs and Rs+1 from Table 1. Results with an N/A indicate those that violate the inequality

RsBs < Rs+1Bs+1. Those instances with a minimum route length just below a bound show the

greatest opportunity for savings, greater than 1% in many cases. In the trucking industry, where

many firms operate with profit margins below 5%, a 1% difference in total cost is significant for

both the shipper and carrier. The cost savings increase with longer routes, as does the window

within which routes should be extended, indicating that a shipper should request that a carrier

bill them by collecting the routing distance over a longer period, perhaps a week rather than a

day.

While revealing the magnitude of savings, quantifying the decrease in cost does not reflect

the frequency with which a route may be extended. As the bands may be arbitrarily set, the

position of a route length within the band and the resulting likelihood that the route should

be increased to decrease cost are also arbitrary. For a shipper to consider extending a route, it

must be feasible for the stops on the route to be arranged such that the length is greater than
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Percentage decrease in per mile rate between bands, Ps

3.83% 3.57% 2.07% 1.60% 1.55% 1.43% 1.29% 1.23% 1.17%

Instance
Minimized

distance

Bound of

next band

Bounded

distance
Percentage decrease in total routing cost

att48 1062.8 1100 1100 0.46% 0.20% - - - - - - -

bayg29 1610 1700 1700 - - - - - - - - -

bays29 2020 2100 2100 0.02% - - - - - - - -

berlin52 754.2 800 800 - - - - - - - - -

brazil58 2539.5 2600 2600.2 1.53% 1.27% - - - - - - -

burma14 3323 3400 3403 N/A N/A - - - - - - -

dantzig42 699 700 700 3.69% 3.43% 1.93% 1.46% 1.41% 1.29% 1.15% 1.09% 1.03%

eil51 426 500 500 - - - - - - - - -

eil76 538 600 600 - - - - - - - - -

fri26 937 1000 1000 - - - - - - - - -

gr17 2085 2100 2100 3.14% 2.88% 1.36% 0.89% 0.84% 0.72% 0.58% 0.52% 0.46%

gr21 2707 2800 2801 N/A 0.22% - - - - - - -

gr24 1272 1300 1300 1.71% 1.45% - - - - - - -

gr48 5046 5100 5100 N/A N/A N/A 0.55% 0.50% 0.37% 0.24% 0.18% 0.11%

hk48 1146.1 1200 1200 - - - - - - - - -

st7 675 700 700 0.27% - - - - - - - -

swiss42 1273 1300 1300 1.79% 1.53% - - - - - - -

ulysses16 685.9 700 700 1.85% 1.59% 0.05% - - - - - -

ulysses22 701.3 800 800 - - - - - - - - -

Table 2: Percentage decrease in cost through the extension of a route to the next band using the change in per

mile rates from Table 1

the bound on the next band, but sufficiently short to reduce total cost. If route construction is

flexible enough, this is a plausible option. Alternatively, without that flexibility, reducing costs

by moving to cheaper mileage bands is not realistic.

Note that in Table 2, the algorithm was unable to find a route that matched the bound on the

band in only three of the 19 instances, and in those three instances the solution added at most

three miles above the bound. The instance in which the route was three miles above the bound

is also the smallest instance with 14 nodes. As the number of solutions grows exponentially with

the number of nodes, given a sufficient number of nodes, the algorithm is able to find a solution

that matches any bound within a reasonable distance. This indicates that if a shipper wishes

to create a route at a specific bound, it is almost certain that such a route could be created.

As the number of nodes decreases, the number of potential solutions also decreases and it

may become difficult to fit the route to a specific distance. To evaluate the potential to adjust

those routes that have fewer than 25 stops, the number of nodes within each instance is reduced

by 75%. The TSPLIB instances with an original number of 76 to 107 nodes are included in this

analysis (an additional five instances), such that the largest instance has 26 stops. The instance

burma14 is not included as removing 75% of nodes leaves it with three stops, which can only

be traveled using one minimum route length. Three instances are created from each original

instance, generating a total of 69 instances. If the number of nodes in the original instance is X,

the nodes removed are the first 0.75X nodes, the last 0.75X nodes, and the middle 0.75X nodes.

Four sets of bounds on the mileage bands were used, with a bound every 100, 150, 200, and

300 miles. Therefore, each original instance produces three instances tested with four bounds,

generating 12 opportunities for the algorithm to find a route close to the bound.

Table 3 presents the aggregated results for all instances, with the average percentage by
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Nodes

Average percentage

increase in route length

above bound

Number of instances with a

route length greater than the

bound (out of 12)

gr17 4 11.96% *

ulysses16 4 18.99% *

gr21 5 8.67% 12

ulysses22 5 24.21% 12

fri26 6 1.57% 7

gr24 6 1.12% 7

bayg29 7 0.82% 7

bays29 7 0.41% 10

dantzig42 10 0.00% 0

swiss42 10 0.88% 1

att48 12 0.05% 3

eil51 12 0.00% 0

gr48 12 0.64% 10

hk48 12 0.42% 7

berlin52 13 0.17% 6

brazil58 14 0.01% 7

st70 17 0.00% 0

eil76 19 0.00% 0

rat99 24 0.00% 0

eil101 25 0.00% 0

rd100 25 0.02% 1

lin105 26 0.01% 1

pr107 26 0.01% 7

Table 3: Instances with an increase in route length

which the route length increased when a bound was added and the number of instances in which

the route length was greater than the bound. Note that for the instances with four nodes, only

two alternative route lengths may be calculated and in several instances a solution could not be

found greater than a larger bound. Of the 252 instances, 98 do not have a solution equivalent to

the corresponding bound. It does become more difficult to find a solution that exactly matches

the bound as the number of nodes is reduced; however, this is still possible for the majority of

instances with each bound, particularly for routes with ten or more nodes.

It is important to note that not every shipper will extend a route when it is feasible and

financially beneficial for them to do so. Some shippers may find the risk associated with adjusting

a schedule to extend a route to be much greater than any potential cost savings. These changes

may result in the violation of time windows, increased in-transit inventory costs, or delivery

errors. The $75 cost savings from extending a route five miles may be too risky for one shipper,

while in a more extreme scenario certain shippers may find the $5 cost savings from extending

a route 40 miles to be worth considering. This model does not make a decision for the shipper,

rather it provides information that the shipper may use to make the decision themselves.
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4. Carrier Focused Mileage Band Construction

Based on these results, a shipper may have both the incentive and the flexibility to extend

route distances to decrease costs. However, from an environmental perspective, and from the

viewpoint of the carrier, extending a route is inefficient and costly. To limit these costs, the

carrier should set the mileage bands to minimize the frequency with which shippers extend their

routes. In this section, we provide a detailed analysis of how a carrier may best create the bounds

on the mileage bands such that their total profit is maximized while the lost profit associated

with shippers extending routes is minimized.

4.1. Model Formulation

Considering the carrier’s perspective, we assume that they are creating mileage bands to

maximize profit, which is a function of revenue generated from the shipper less the operating

cost (e.g. fuel, driver wages, etc.) of executing the route to serve the shipper. We also assume

that every shipper that may reduce the rate charged by the carrier by extending a route will do

so and, based on the results in Section 3.3, that the shipper may extend the route to a length

that matches the bound on the next greater band. It is likely that not every shipper with a

financial incentive will extend a route, particularly if that incentive is limited. However, the

model we propose indicates how a carrier may create mileage bands limiting the likelihood that

a shipper will have any incentive to extend a route, while also maximizing the profits of the

carrier regardless of what the shipper does.

We presume the carrier is free to determine all parameters associated with the band scheme,

most importantly the bound on each band, Bs, the number of bands, |S| and the rate per mile

for each band, Rs. For this analysis, we assume that all Rs values are selected before the bands

are set, and that Rs is monotonically decreasing as s increases, such that the highest rate band

is s = 1. We define the per mile operating costs that the carrier incurs as Cs. These costs

may remain constant across all bands, although they most likely decrease as bands increase

(Forkenbrock, 1999). The bounds, Bs, are the fundamental variables in this model.

We assume that the bands are determined based on a set of historical routes, L, that the

carrier has executed in the past for one or multiple shippers. Each route i ∈ L has a known length

Di. As many contract carriers operate on a regular schedule, the routes that these carriers follow

are often repetitive and the carrier may develop a distribution based on the length of routes

previously traveled for a particular shipper or a set of shippers. Let H be the range of the route

lengths that the carrier has executed. We also assume that there is a minimum width, w, and

maximum width, W , on each band, and that there is a minimum number of bands, V .

The profit that the carrier gains from executing a route without extension is ki = Di(Rs−Cs),

where i is in band s. If a shipper extends a route when it is beneficial for them to do so, the

resulting decrease in profit for the carrier is li = Di(Rs − Cs) − Bs+1(Rs+1 − Cs+1), where

Di(Rs −Cs) is the profit of the route without extension and Bs+1(Rs+1 −Cs+1) is the profit of
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the route if it is extended. Note that li ≥ 0 for all i, such that additional profit is not generated

for route distances that are below the mileage break, where Di(Rs −Cs) < Bs+1(Rs+1 −Cs+1).

We assume that the decrease in operating cost is less than the decrease in rate across all bands,

such that Rs−Cs > Rs+1−Cs+1 for all s, and that Rs−Cs is constant across the entire band s.

As Cs may change at a different rate from Rs, there may be instances where the shipper extends

the route without a loss in profit for the carrier, when DiRs > Bs+1Rs+1 but the drop in Cs is

large enough that Di(Rs − Cs) < Bs+1(Rs+1 − Cs+1). We focus on the carrier perspective here

and are only interested in those instances when a route extension results in lost profit for the

carrier. The net profit for a carrier for any route is then ki − li. Similar to the formulation in

Section 3.1, yis is 1 if route i falls in band s and 0 otherwise. We present the following model

that sets the mileage band bounds to maximize the carrier’s total net profit:

maximize
∑
i∈L

(ki − li)

subject to

ki ≤ Di(Rs − Cs) +M(1− yis) ∀i ∈ L, s ∈ S, (10)

li ≥ Di(Rs − Cs)−Bs+1(Rs+1 − Cs+1)−M(1− yis) ∀i ∈ L, s ∈ S, (11)

Diyis < Bs+1 ∀i ∈ L, s ∈ S, (12)

Bs ≤ Di(M −Myis + 1) ∀i ∈ L, s ∈ S, (13)∑
s∈S

yis = 1, ∀i ∈ L, (14)

w ≤ Bs+1 −Bs ≤W ∀s ∈ S : s < |S|, (15)

yis ∈ {0, 1} ∀i ∈ L, s ∈ S, (16)

Bs ≥ 0 ∀s ∈ S (17)

ki, li ≥ 0 ∀i ∈ L (18)

The objective maximizes the profit gained from route i, ki and minimizes the profit lost

from a shipper lengthening route i, li. Constraints (10) define the profit gained by bounding

it from above by the profit generated from executing each route, where we assume that M is a

very large number. Constraints (11) define the profit lost by bounding it from below with the

difference between the profit generated from executing the route and the potentially lower profit

from executing a route the length of the lower bound on the next greater band. Constraints

(12) and (13) bound each route length within the appropriate band, such that routes equivalent

to a bound are in the greater band. Constraints (14) ensure that each route is within one band.

Constraints (15) regulate each band width to make sure they are not larger or smaller than the

preestablished limitations.
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To better understand the band structure, we consider how the two components of the objec-

tive, profit gained and lost profit from route extension, independently impact the band widths,

finding that they lead to widely different mileage bands. First, we consider maximizing the ki

profit component, which is done by maximizing each bound.

Theorem 4.1. Maximizing
∑

i∈L ki is equivalent to maximizing
∑

s∈S Bs.

Proof: As ki ≤ Di(Rs −Cs) +M(1− yis) and Di is a constant for each i, ki can only increase if

the corresponding value Rs−Cs changes, such that Di(Rs−Cs) < Di(R
′
s−C ′s) or Di(Rs−Cs) <

Di(Rs−1−Cs−1). As Rs−Cs is fixed for each band s, the only way to increase this value for any

route i is to move the route to the more expensive band s− 1. To move a route of fixed length

Di to the band s − 1, the bound Bs must be increased to a value greater than Di. Therefore,

Di(Rs − Cs) is maximized by maximizing Bs. As this holds for every i,
∑

i∈L ki is maximized

when
∑

s∈S Bs is maximized. �

Therefore, when solely maximizing profit gained, the widest bands should be those with the

highest profit per mile, lowest in the range of bands. The binding constraint on band width

is then the maximum width, Bs+1 − Bs ≤ W , and bands are only less than this width when

constrained by the range, H, and the minimum number of bands, V .

The route extension component of the objective function involving lost profit is more complex

as it is dependent on whether a route should be extended. As li ≥ 0 for all i, li only has a non-

zero value when Di(Rs − Cs) > Bs+1(Rs+1 − Cs+1). To analyze this component, we introduce

an alternative mileage break that indicates the distance at which route extension leads to a

decrease in profit, Y ′s = Bs+1(Rs+1−Cs+1)
Rs−Cs

, as well as the percentage decrease in per mile profit,

P ′s = (Rs−Cs)−(Rs+1−Cs+1)
Rs−Cs

. The route is then extended when the distance Di is between Y ′s and

Bs+1. Therefore, to minimize the expected value of
∑

i∈L(Di(Rs−Cs)−Bs+1(Rs+1−Cs+1)), the

number of routes with distance Di between Y ′s and Bs+1 must be minimized. This is dependent

on the distribution of the route lengths and the space between Y ′s and Bs+1. Note that as

Y ′s (Rs − Cs) = Bs+1(Rs+1 − Cs+1) and Rs+1 − Cs+1 = (Rs − Cs)(1− P ′s), Y ′s = Bs+1(1− P ′s).
While the trucking industry provides aggregated data on the distribution of freight moved

by distance (Sprung, 2017), there is no research available that defines the distribution on route

lengths used by a dedicated carrier serving individual shippers. For our analysis, we consider

two distributions of route length, uniform and triangular, selected because they require few

presumptions regarding shape and parameter values. A uniform distribution has a basic shape

defined only by a range, while a triangular distribution only requires a mode and range. These

distributions also were a good fit to the sample of route lengths provided by our industry contacts.

Further, the results of the following numerical analysis are comparable across both distributions,

indicating that the managerial insights hold similarly for these varied distributions.

We first assume a carrier has executed a series of routes with lengths that are uniformly

distributed over the support [a, b] (note that this support defines the route length range H).

Let X be the distance of a potential route and F (X) be the probability that X falls between
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Y ′s and Bs+1, such that F (X) = Bs+1−Y ′s
b−a . By minimizing F (X), the carrier minimizes the

probability that a shipper extends the route, thereby minimizing the expected lost profit from

route extension. We now show that minimizing F (X) is done by minimizing each bound.

Theorem 4.2. Given a support [a, b] for a uniformly distributed set of route lengths, minimizing
F (X) is equivalent to minimizing Bs, for any s ∈ S.

Proof: As F (X) = Bs+1−Y ′s
b−a and Y ′s = Bs+1(1− P ′s), F (X) may be written as:

F (X) =
(Bs+1 − Y ′s )

b− a

=
Bs+1 −Bs+1(1− P ′s)

b− a

=
P ′s ∗Bs+1

b− a

As a, b and P ′s are fixed parameters, minimizing Bs+1, or Bs, will minimize F (X). �

Therefore, when solely minimizing the lost profit associated with route extension, we must

minimize the probability that a route will be extended, which is done by minimizing each bound.

Thus, the narrowest bounds are those lowest in the range of bands, which is the complete opposite

of how the bands are constructed to maximize profit.

Figure 1 provides an example of bands for uniformly distributed route lengths, with H =

[300, 700], w = 90, W = 120, V = 4 and P ′s = 3% for all bands. The shaded regions are where a

shipper would want to extend the route to the next band. Figure 1(a) is a set that is commonly

used in industry, equally spaced at 100 miles per band. To minimize the likelihood that a shipper

will lengthen a route, F (X), the second figure shows that the first two bands are minimized at

90 miles and the remaining bounds increase in order to fill the remainder of the range. As the

value for each bound has decreased, so has the corresponding probability F (X). The final figure

presents the bands with the profit maximized, with the first band as the largest set at 120 miles,

and the greater bands only decreasing in width due to the limitations of the range.

Consider a simple set of route lengths, where there is a route every 10 miles over this range

(i.e., 310, 320, 330...) and the profit per mile of the first band is $0.15. The profit gained for

routes in the first band in Figure 1(a) is calculated as $0.15 ∗ (310 + 320 + ... + 380) = $414,

as the route with length 390 is extended by the shipper to 400 miles. The profit gained for

routes in the second band is $0.15 ∗ (1 − 0.03) ∗ (400 + 400 + 410 + ... + 480) = $634.38, as

the profit per mile is reduced by P ′s = 3% and the route of length 390 was extended to 400

miles. The profit lost due to route extension in the first band in Figure 1(a) is calculated as

$0.15 ∗ 390− $0.15 ∗ (1− 0.03) ∗ 400 = $0.30 as this is the only route that was extended by the

shipper. The profit gained and profit lost due to route extension are similarly calculated for each

band for each set of band widths and the totals are found in Table 4. The bands that minimize

the probability of route extension have the lowest profit gained, but also the lowest profit lost

associated with route extension. The bands that maximize profit have the greatest profit, but
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Figure 1: Comparison of three mileage band settings for a uniform distribution

also the highest lost profit from route extension. The equally spaced bands have neither the

highest profit gained nor the lowest profit lost.

(a) (b) (c)

Profit gained $2772 $2761 $2777

Profit lost $3.80 $3.60 $5.40

Table 4: Profit gained and lost profit due to route extension for example in Figure 1

The expected route lengths that a carrier executes may be found to more closely resemble

a triangular distribution. This distribution is defined by a lower limit a, upper limit b, and a

mode c. When considering the profit maximizing component of the objective function, Theorem

4.1 still holds as it is not dependent on the distribution. However, the construction of bands

changes when minimizing the profit lost from route extension. In considering the probability

F (X) that route X has a length between Y ′s and Bs+1, each mileage band may fall under one of

the following scenarios: 1) the values of Y ′s and Bs+1 are both less than or equal to the mode c;

2) both are greater than c; or 3) Y ′s is less than or equal to c and Bs+1 is greater than c. Figure

2 presents mileage bands that each depict one of these scenarios. We now show that minimizing

F (X) is dependent on where the band falls within the distribution.
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Figure 2: The three mileage band scenarios for a triangular distribution

Theorem 4.3. Given a triangularly distributed set of route lengths with lower limit a, upper
limit b, and mode c, F (X) is minimized when:

1. Y ′s ≤ c and Bs+1 ≤ c: minimizing Bs+1, for any s ∈ S.

2. Y ′s > c and Bs+1 > c:

(a) maximizing Bs+1, for any s ∈ S, when Bs+1 >
b

2−P ′s
(b) minimizing Bs+1, for any s ∈ S, when Bs+1 <

b
2−P ′s

3. Y ′s ≤ c and Bs+1 > c:

(a) maximizing Bs+1, for any s ∈ S, when Bs+1 >
(ab−ac)P ′s+(a−b)c

(c−b)P ′
s2

+(b−c)2P ′s+a−b ;

(b) minimizing Bs+1, for any s ∈ S, when Bs+1 <
(ab−ac)P ′s+(a−b)c

(c−b)P ′
s2

+(b−c)2P ′s+a−b .

The proof of this theorem may be found in the Appendix. The result for bands less than c

is very similar to that for the uniform distribution, with narrow bands lower in the distribution.

This is primarily because if the bound is closer to the mode, the probability F (X) increases,

even if the distance between Y ′s and Bs+1 is the same as bounds lower in the distribution. Thus,

each band that is below c is likely to have a width at or close to w.

For bands greater than c, the bounds on the bands should generally be maximized with the

most narrow bands grouped higher in the distribution. A symmetric triangular distribution will

always have a mode c ≥ b/2, such that Bs+1 >
b

2−P ′s
for all P ′s > 0 and Bs should be maximized

to minimize F (X). Also, as Y ′s = Bs+1 ∗ (1 − P ′s) = b∗(1−P ′s)
2−P ′s

≥ b
2 , Y ′s ≥ c whenever c ≥ b/2.

As with the other half of the distribution, as the bound is closer to the mode, the probability

F (X) increases, even if the distance between Y ′s and Bs+1 is the same as bounds higher in the

distribution. This leaves the widest bands in the middle of the distribution, just above c in a

symmetric distribution or b
2−P ′s

in an asymmetric one. When the mode of the distribution is less

than b/2, the bounds less than b
2−P ′s

should follow a pattern similar to that for the first scenario.

The third portion of this theorem indicates that a bound should generally not be placed

close to the mode. The value (ab−ac)P ′s+(a−b)c
(c−b)P ′

s2
+(b−c)2P ′s

is always greater than the mode c and it is less

than b
2−P ′s

under most realistic conditions. As with the second scenario, bounds above this value

should be increased to decrease F (X), while bands below should be decreased. When the bound

is decreased to c, the conditions for the first part of the theorem hold and the bound should be
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further minimized. As the bound is increased to c
1−P ′s

, the conditions for the second part of the

theorem hold and the bound should be maximized.

Consider the examples in Figure 3. As in Figure 1, H = [300, 700], w = 90, W = 120, V = 4

and P ′s = 3% for all bands. Note the value b
2−P ′s

= 355, below the mode. The shaded regions are

where a shipper would want to extend the route to the next band. The examples on the left are

a symmetric triangular distribution, while an asymmetric distribution is on the right. Figure

1(a) depicts bands set as used in industry, equally spaced at 100 miles per band. To minimize

F (X) for the symmetric distribution the two bounds below the mode are minimized to create

bands of 90 miles, while the bound just above the mode is maximized to create a band of 120

miles, as shown in Figure 1(b). For the asymmetric distribution, the two extreme bounds on

either end of the distribution are minimized, while the 120 mile band is shifted right to again

straddle the mode. If the 100 and 120 mile bands were swapped, this would lead to a larger

F (X) value for the 100 mile band as the shaded region would be moved closer to the mode,

while the probability for the 120 mile band would be the same as currently pictured for the 100

mile band. The bands when maximizing profit, as depicted in Figure 3(c), are the same as they

were for the uniform distribution. While there are more routes in the 100 mile band than in the

120 mile band, the profit is still maximized by having the widest band at the highest cost per

mile as reducing the bound on the first band would also shift all of the other bands to a lower

cost per mile. Testing with a set of triangularly distributed route lengths produces results that

are similar to those found in Table 4.

4.2. Numerical Analysis

These theoretical results indicate that the two components of the objective function lead

to sets of mileage bands that are counter to each other. We now consider how the bands are

constructed in balancing these contradictory components. We apply the model to a set of

problem instances that test a variety of parameters.

The primary input to the model is the set of route lengths that the carrier has operated (or

expects to operate). As no previous research has been conducted on this problem, we generate

sets of route lengths that mimic what a carrier might experience, while providing an opportunity

to test how band widths fluctuate under a variety of conditions. The route lengths are randomly

generated using both uniform and triangular distributions over several ranges, H: [500,1500],

[1500,2500] and [2500,3500] miles. The route length is a factor of the period over which the

carrier operates the route and this can vary from shipper to shipper. Thus, assuming that a

truck may travel approximately 50 miles per hour, the route length ranges represent the distance

that may be traveled over a day (500 miles) to a week (3500 miles).

As the probability F (X) is proportional to Bs+1 and P ′s, increasing the range within which

the route lengths are found will increase F (X), if the change in profit per mile is held constant.

If the band width constraints, w and W , were to increase proportionally as the range increases,

the same results would be produced for each range. Therefore, to test the impact of route length
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Figure 3: Comparison of three mileage band settings for a triangular distribution, symmetric on the left, asym-

metric on the right

range on mileage band construction, we maintain the same minimum and maximum band width

for each range. Small band widths create conditions under which the shipper may extend the

route to decrease cost even if the minimum route length is equivalent to a bound. For example,

if a band width is 50 miles and the cost per mile for a route in the band 2000 − 2049 miles

is $1.50 with a 3% decrease in rate between bands, the shipper’s cost for a 2000 mile route is

$3000, more than the cost for a 2050 mile route in the next band, 2050 ∗ 1.5 ∗ 0.97 = $2982.75.

These conditions can be contrived to create similar situations for larger band widths, but under

those circumstances the other parameters fall outside of a realistic range (e.g., a rate decrease

greater than 5%). A minimum band width of w = 75 is the smallest value that prevents these

occurrences for all tested parameters.

As indicated by Theorem 4.1, profit is maximized for the carrier when the band width is

maximized, with the width only limited by the maximum width, W , and the minimum number

of bands, V . If V ∗W < H, profit is always maximized with H
W bands of width W . Both V
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and W should have a value ensuring that the algorithm does not always select the minimum

number of bands with the maximum width. To provide a sufficient number of bands and to

make a comparison with a set of industry bands where each 1000 mile range is divided into ten

equal bands of 100 miles, we use a value of V = 10. To limit an extreme scenario with one large

band of maximum width and many small bands of minimum width, while limiting the variation

in width from one band to the next, we use a value of W = 200.

The number of route lengths is also varied, with fewer route lengths available representing

a greater spread of routes within a range or limited information on the expected route lengths.

This variation was tested for H = [1500, 2500], with the problem instances composed of 25, 50,

or 100 route lengths within this range. All problem instances using the other two ranges have

50 route lengths per instance.

To determine the profit per mile for the bands, we consider both the rate, Rs, and the oper-

ating cost, Cs. Based on a survey of industry, the American Transportation Research Institute

indicates an average marginal operating cost of $1.50 per mile for TL carriers in 2015 (Torrey

& Murray, 2016). Carriers are less willing to provide rate information. The trucking load board

DAT indicates that the average national van rate in November 2017 is $2.06 per mile (DAT

Solutions, 2017), while other trucking boards provide widely varying rates. The carrier rates

provided to the shipper that was the basis of this study, shown in Table 1, indicate an initial

rate of $1.514. When considering the range of both rates and costs, per mile profits can vary

significantly. Because of these variations, per mile profit in the range of [$0.05-$1.50] was ini-

tially tested for the first, lowest band. Results indicate that there is virtually no difference in

bands as this initial value changes. Therefore, we use the median of the various profit values

found in our research, $0.15, for all analysis reported here.

Numerous values for the rate at which profits decrease from band to band, P ′s, are also

considered. The change in P ′s may be linear if the change in Cs is constant while Rs decreases

linearly, if a decreasing change in Rs is counteracted by an increasing change in Cs, or vice versa.

We test the problem instances with a constant value of P ′s = 1%, 2% and 3% between bands.

Values above 3% maintain a similar pattern and are not reported for brevity. As Rs and Cs may

change at different rates, we also test instances with both increasing and decreasing P ′s. These

include a rate that increases by 0.5% from one band to the next with P ′1 = 0.5%, P ′2 = 1%...

(referred to as IR 0.5%), a rate that decreases by 0.5% with P ′1 = 4.5% (DR 0.5%), a rate that

increases by 1% with P ′1 = 1% (IR 1%), and a rate that decreases by 1% with P ′1 = 9% (DR

1%). Finally, the values for the percentage decrease in Rs shown in Table 1 are tested on each

problem instance, with the assumption that Cs is constant such that P ′s = Ps.

A carrier may be interested in limiting route extension as they perceive other intangible

costs, such as the environmental impact or operational inefficiency. To evaluate the emphasis

that a carrier wishes to place on limiting route extension, we add a weighting parameter, α, on
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the li component of the objective function, such that it becomes:

maximize
∑
i∈L

(ki − αli)

This parameter takes the values α = {1, 2, 3, 4, 5}. Adjusting this value should indicate how the

mileage bands and profits change as more emphasis is placed on minimizing route extension.

We also test conditions where only profit gained is maximized with no consideration for route

extension, with α = 0, and conditions under which only the lost profit from route extension is

minimized, where the objective is simply to minimize
∑

i∈L li.

To establish a baseline for the band widths, problem instances with a set of routes evenly

distributed across the range are tested for both uniform and triangular distributions. The

uniform instance is constructed such that there are 50 route lengths, one every 20 miles over the

range (the first route length is equivalent to the range parameter a, while the last is 20 miles below

the parameter b). The triangular instance is constructed using the random variate generating

functions, DU = a +
√
U(b− a)(c− a) for 0 < U < F (c) and X = b −

√
(1− U)(b− a)(b− c)

for F (c) ≤ U < 1, where F (c) = c−a
b−a and U ranges from 0.02 to 1 in increments of 0.02.

The model is solved using CPLEX 12 on a cluster of machines with 8 Intel Xeon CPUs

running at 2.66 GHz with 32 GB RAM. Processing time is not a factor. We next examine the

computational results in order to address the following:

1. Determine the value for α that most limits route extension with the least impact on profit,

2. Examine how the sparseness of routes over the range impacts the profit associated with

mileage bands,

3. Examine how the average route length impacts the profit associated with mileage bands,

and,

4. Examine how the change in profit per mile impacts the profit associated with mileage

bands.

In the course of this analysis, we show that the mileage bands created by the model outperform

bands of equidistant width by both generating more profit and minimizing the frequency with

which routes may be extended by the shipper.

4.2.1. Analysis of α

The α weighting parameter that increases the emphasis on limiting route extension has the

most significant impact on the model. For each instance, we compare the change in profit gained

relative to the change in lost profit due to route extension as the α value increases. Throughout

this analysis, we will refer to lost profit due to route extension as the cost of route extension,

as it is a cost incurred by the carrier. We determine the largest profit generated across all α

values for an instance and calculate the decrease for each of the other values. For example, if the

largest profit for one instance is found to be $10,000 with α = 1, while the profit is $9,000 when
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the weight is α = 5, the decrease in profit with α = 5 is $1,000. The cost of route extension

reported is the actual value li, not the value multiplied by the α weight.

Figure 4 presents a comparison of the average change in profit and average cost due to route

extension for all uniformly and triangularly distributed instances. The two distributions have

very similar results. With α = 0, profit is maximized while the cost of route extension is also

largest. As α increases, both profit and the cost of route extension decrease. For the smaller

values of α the decrease in cost outweighs the decrease in profit, indicating that an emphasis

should be placed on limiting route extension, particularly if there are additional costs beyond

the lost profit. The impact tapers off as α increases above a value of three, amplified when there

is no weight on the profit component. Thus, a carrier should consider a limited emphasis on the

cost of route extension, with an α value between 1 and 3 appropriate for these instances.
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Figure 4: Comparison of average decrease in profit from best solution and cost of route extension for all uniformly

and triangularly distributed instances

For an additional comparison, the profit values were calculated for a set of bands used in

industry. Each band width is fixed at 100 miles, such that there are ten bands within each

range. In Figure 4, the metrics for these two sets of instances are indicated by a U for the

uniformly distributed instances and T for the triangularly distributed instances. Using equally

spaced bands results in an overall decrease in profit and a possible increase in cost due to route

extension. These equidistant bands do result in a lower cost due to route extension relative to

those instances that only maximize profit, but at a considerable decrease in profit. Carriers using

these equidistant band widths would likely be able to generate additional profit by adjusting

the widths as described here.
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Figure 5 presents the average width of each of the bands, distinguished by α weight, and

the theoretical bands based on maximizing profit and minimizing the cost of extended routes.

The number of bands was equivalent to the minimum V = 10 for all instances, as increasing

the bands decreased profit and increased the opportunities for a route to be extended. Those

instances with small α values have the widest bands low in the range, allowing for the most

routes to be charged the highest per mile rates. They closely mimic the theoretical bands that

maximize profit. The bands low in the range narrow with an increase in α; however, even with

a myopic focus on minimizing the cost of route extension, the band widths high in the range

do not approach the maximum of 200 miles, as seen in the theoretical bands. This is due to

the variation in the route lengths. Profit maximization is not dependent on how route lengths

are distributed within the range, simply increasing profits by maximizing the lowest bounds.

Minimizing the cost of extending routes takes into consideration where the opportunities for

this extension exist. So, if several routes are grouped together low in the range, this band is

widened to prevent any of these routes from being extended, rather than creating a wider band

higher in the range as theoretically predicted.
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Figure 5: Average width of the bands for all uniformly distributed instances and theoretical bands for maximizing

profit and minimizing cost of route extension

To emphasize this point, the model is tested on the evenly distributed uniform instance, with

a route length every 20 miles over the range. Figure 6 presents the band widths for this instance.

The results for those instances with a small α are very similar to those found in Figure 5, with the

lower bands approaching or reaching the maximum limit of 200 miles. The instance with α = 0

has a slightly smaller first band as there are multiple optimal solutions under these conditions
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and the model selected one in which the first band width was not set at the maximum of 200

miles. However, even with α = 5, there is not enough emphasis on minimizing the cost of route

extension to mimic the theoretical bands. We tested three additional values of α = 10, 100, 500,

with the bands for α = 500 equal to the bands when profit is not considered. For these two

instances, band 9 is shorter than the theoretical band, primarily due to the slightly uneven

spacing at the end of the distribution (further highlighting the sensitivity of the band widths to

the route lengths).
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Figure 6: Average width of the bands for instances that are evenly uniformly distributed

Figure 7 presents the average width of each of the ten bands, distinguished by α weight,

for the symmetric triangularly distributed instances. The results are similar to those found in

Figure 5. Again, the instances with small α values have the widest bands low in the range, with

those bands becoming more narrow as α increases, and even with a myopic focus on minimizing

the cost of extending a route, the middle bands are not as wide as the theoretical bands. This

is again due to the variation associated with the randomly generated route lengths. Note that

with the theoretical bands, band 6 straddles the mode c. The results with evenly triangularly

distributed route lengths are similar to those presented in Figure 6, in that they closely replicate

the theoretical bands, but only when α is greatly increased.

We now consider the impact that several other parameters have on the profit and cost

values. Unless otherwise indicated, the band widths are similar to those already presented for

the remaining instances, so they are not presented here for brevity. The following results are

reported only for the uniformly distributed instances, as the triangularly distributed instances

reflect similar patterns.
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Figure 7: Average width of the bands for all symmetric triangularly distributed instances and theoretical bands

for maximizing profit and minimizing cost of route extension

4.2.2. Analysis of route length density

A carrier may serve routes that are sparsely distributed over the range, H, or they may

simply have a shorter history of routes from which to draw a distribution. This impacts the

structure of the bands and the resulting profits. As the number of routes used for an instance

varies from 25 to 100, the profits also vary considerably. To make a valid comparison, both

metrics are normalized by dividing the profit or cost for each instance by the largest profit or

cost, respectively, among all α values for that instance, such that 100% indicates the largest

decrease in profit or increase in cost and 0% the smallest.

Figure 8 presents a comparison of the instances with a varying number of routes spread across

the range H = [1500, 2500]. As the number of route lengths within the distribution decreases,

a larger α leads to a greater drop in cost of route extension, but also a greater decrease in

profit. For those instances where the route lengths are sparsely distributed, it is easier for the

bounds to be spaced to limit opportunities for route extension. However, as there are fewer

routes that amount to less profit, adjusting the bands has a bigger impact on that profit. These

results indicate that a carrier that executes routes with lengths that are more dispersed across

the range is likely to limit costs due to route extension, but with a slightly greater risk of lost

profit.

4.2.3. Analysis of average route length

Another factor that a carrier may consider in creating mileage bands is the average length

of the routes executed, which was analyzed by testing three different ranges. As the profit of
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Figure 8: Comparison of normalized decrease in profit and increase in cost of route extension relative to respective

best solutions for uniformly distributed instances with 25, 50 and 100 route lengths for H = [1500, 2500]

the route is determined by multiplying the length and the per mile rate, if the carrier executes

shorter routes, the cost for increasing route lengths to cheaper bands is not as significant. When

routes are longer, those costs have more of an impact.

Figure 9 presents a comparison of the normalized decrease in profit and increase in cost

of route extension for the three different values of H. Similarly to the instances with sparsely

distributed route lengths, the instances in the range [500,1500] exhibit a greater reduction in cost

from route extension, but without a corresponding decrease in total profit. For shorter route

lengths, the window between the mileage break, Y ′s , and bound Bs+1 is smaller relative to the

other ranges and there are fewer opportunities for a shipper to extend a route to decrease cost.

Reducing this window has a greater impact than reducing the number of routes over the range,

as evidenced by the limited decrease in profit for these shorter routes. Alternatively, it is more

difficult to limit the cost of route extension as route length increases. A carrier that regularly

executes long routes is more prone to losing profit due to route extension and having that impact

total profit. It is all the more important that such a carrier build appropriately spaced mileage

bands. From the shipper perspective, just as longer routes provided more flexibility to adjust

the route to the distance of a bound, longer routes also increase the probability that the route

should be extended for cost savings.

4.2.4. Analysis of change in per mile profit

Finally, we consider how the decrease in per mile profit between bands impacts the width of

the bands. Figure 10 presents the impact on profits for the three linear decreases in P ′s, 1%-3%,
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Figure 9: Comparison of normalized decrease in profit and increase in cost of route extension relative to respective

best solutions for uniformly distributed instances with H = [500, 1500], [1500, 2500] and [2500, 3500]

and the real world values (“Actual”) in Table 1. As P ′s increases, the gap between Y ′s and Bs+1

grows, increasing the probability that a shipper will extend a route to reduce cost. This is

reflected in the results. With a rate of P ′s = 1%, this gap is the smallest, just as it was for the

shortest routes in the previous section, and the greatest cost reduction may be found with the

smallest decrease in profit. Conversely, when P ′s = 3%, it becomes difficult to limit the cost

due to route extension as there are more routes that qualify for this extension. The results for

P ′s = 2% and the real world values are similar as the average of the latter values is close to 2%.

These results indicate that a carrier should expect that shippers will be more likely to extend

their routes if given the opportunity through larger rate reductions. While not surprising, this

does confirm that a carrier should be judicious in the reduction they offer if they hope to prevent

route extension.

The results differ with increasing and decreasing values for P ′s, shown in Figure 11, where

IR 0.5% has P ′s values that range from 0.5% to 4.5% (DR 0.5% from 4.5% to 0.5%), while IR

1% ranges from 1% to 9% (DR 1% from 9% to 1%). The values with P ′s = 3% for each band

are also included to provide context relative to the results in Figure 10. The results for IR 0.5%

are similar to those found with P ′s = 3%. The cumulative decrease between the initial profit

of $0.15 for the first band and the profit of the last band at $0.1193 is 20%, compared to 24%

with P ′s = 3%, which is reflected in the slightly lower decrease in profit with IR 0.5%. However,

the change in profit per mile between the latter bands with IR 0.5% is greater than 3%, which

allows for the extension of more routes, increasing the cost.

The instances with a decreasing change in profit per mile exhibit a larger drop in the cost of
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Figure 10: Comparison of normalized decrease in revenue and increase in cost of route extension relative to

respective best solutions for uniformly distributed instances with linear and actual per mile profit decrease between

bands
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Figure 11: Comparison of normalized decrease in revenue and increase in cost of route extension relative to

respective best solutions for uniformly distributed instances with increasing and decreasing per mile profit between

bands
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route extension relative to the corresponding instances with an increasing rate. However, they

also reflect a considerably greater decrease in profit. With the largest drop in per mile profit for

the first band, rather than the last band, narrowing the wide bands that are low in the range

has more of an impact on reducing the cost of route extension, but with a greater decrease in

profits. Figure 12 presents the bands for the instances using DR 1%. The two lowest bands

are visibly more narrow than in previous results, while the third and fourth bands are wider.

With such a large drop in profit per mile, decreasing the width of the first two bands reduces

the likelihood that the highest profit routes will be extended to bands with a lower profit. This

reduces the cost of route extension with a considerable decrease in profit. The bands using DR

0.5% are similar, with a less significant change. These results indicate that if the profit per mile

between bands changes at a varying rate, it will impact the band widths, particularly if the rate

is decreasing. A carrier may consider decreasing the bands under these conditions, but this is

likely to reduce profit.
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Figure 12: Average width of the bands for all uniformly distributed instances with P ′s set using DR 1% and

theoretical bands for maximizing profit and minimizing cost of route extension

5. Conclusions

This research presents a model and an algorithm through which shippers may find the lowest

cost route when the carrier uses mileage bands for pricing. The Bounded TSP algorithm shows

that even a route with few nodes may be adjusted to match the bound of a band, maximizing

the opportunity for the shipper to reduce cost. This adjustment comes at the cost of a carrier

traveling an additional distance on a route. In order to limit this additional travel, while also
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continuing to offer mileage band incentives, guidelines are presented for a carrier to improve

the methodology by which mileage bands are created. Theoretical guidelines are provided for

both uniform and triangular distributions on expected shipper route distances. An algorithm is

also presented that creates bands based on a specific set of routes. The results from testing this

algorithm provide managerial insight into how a carrier may best set band widths to maximize

profit and minimize the cost of shippers extending routes.

Based on these results, the following are recommended for a carrier creating mileage bands:

1. avoid the equidistant bands that are most commonly used, as these lead to a decrease in

profit and potentially allow for shippers to extend routes.

2. place some emphasis on limiting route extension. An α value between 1 and 3 produced the

greatest reduction in cost from route extension without a comparable decrease in profit.

3. if executing shorter routes, or routes that vary considerably in length, a focus on limiting

route extension can be particularly beneficial.

4. the greater the decrease in per mile profit from band to band, the more opportunity for

a shipper to extend a route. A larger decrease should be balanced with a larger band. A

decreasing rate in per mile profit as bands increase may be countered with smaller bands

low in the range.

Considerable research on piecewise linear costs focuses on volume quantity discounts without

considering how the price breaks should be distributed. The research here may be applied to that

area. Alternatively, research in that area considers how demand changes with price, which should

be considered for this problem. As the carrier modifies the mileage bands, the demand may vary

from that previously forecast. Game theory may be useful in developing an equilibrium model

that balances the carrier’s needs with those of the shipper. There may also be opportunities for

the carrier to offer different mileage bands to each shipper based on the sophistication of the

shipper. If a shipper regularly generates routes that are suboptimal in terms of length, while also

just above a bound on a mileage band, they may reduce the bound on the band to incentivize

the shipper to create shorter routes.
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APPENDIX

Proof of Theorem 4.3:

1. As F (X) = (Bs+1−a)2−(Y ′s−a)2
(b−a)(c−a) , Y ′s (Rs − Cs) = Bs+1(Rs+1 − Cs+1) and Rs+1 − Cs+1 =

(Rs − Cs)(1− P ′s), F (X) may be defined as:

F (X) =
(Bs+1 − a)2 − (Y ′s − a)2

(b− a)(c− a)

=
B2

s+1 − 2aBs+1 − Y ′s2 + 2aY ′s
(b− a)(c− a)

=
B2

s+1(2P
′
s − P ′s2)−Bs+1(2aP

′
s)

(b− a)(c− a)

We then find the extreme point at:

dF (X)

dBs+1
=

2Bs+1(2P
′
s − P ′s2)− (2aP ′s)

(b− a)(c− a)
= 0

Bs+1 =
a

2− P ′s

The largest value that Bs+1 may take under this condition is a, which is the lower limit on

Bs+1. This is shown to be the minimum value of F (X) by observing that d2F (X)
dB2

s+1
= 2−P ′s,

which is positive for every value of P ′s. Therefore, decreasing Bs+1 to a decreases F (X).

2. As F (X) = (b−Y ′s )2−(b−Bs+1)2

(b−a)(b−c) , Y ′s (Rs − Cs) = Bs+1(Rs+1 − Cs+1) and Rs+1 − Cs+1 =

(Rs − Cs)(1− P ′s), F (X) may be defined as:

F (X) =
(b− Y ′s )2 − (b−Bs+1)

2

(b− a)(b− c)

=
Y ′s2 + 2bBs+1 −B2

s+1 − 2bY ′s
(b− a)(b− c)

=
Bs+1(2bP

′
s)−B2

s+1(2P
′
s − P ′s2)

(b− a)(b− c)

We then find the extreme point at:

dF (X)

dBs+1
=

2bP ′s − 2Bs+1(2P
′
s − P ′s2)

(b− a)(b− c)
= 0

Bs+1 =
b

2− P ′s

This is shown to be the maximum value of F (X) by observing that d2F (X)
dB2

s+1
= −(2 − P ′s),

which is negative for every value of P ′s. Therefore, F (X) is maximized for a bound at
b

2−P ′s
, decreasing as the bands are pushed in either direction from this value.

3. The proof is similar to that for part 2.

32



 

! " #$

%

& " #$

'( " (%)#$ * '( "  )%

% "  #$
!*  " % !#$ * ( "  

 !"#$%!&'(%&()&*#(+&,'-.(%&(-#$"#/.#(F(X)

c ba

Figure 13: Circumstance depicting when b
2−P ′

s
> c

1−P ′
s
>

(ab−ac)P ′
s+(a−b)c

(c−b)P ′
s2

+(b−c)2P ′
s

Using the fact that F (X) = 1 + (b−Bs+1)2∗(a−c)+(Y ′s−a)2(c−b)
(b−a)(b−c)(c−a) , Y ′s (Rs − Cs) = Bs+1(Rs+1 −

Cs+1) and Rs+1 − Cs+1 = (Rs − Cs)(1− P ′s), we find that:

dF (X)

dBs+1
= cP ′s2Bs+1 + aBs+1 + 2bP ′sBs+1 − bBs+1

= −bP ′s2Bs+1 − 2cP ′sBs+1 + acP ′s − baP ′s + bc− ac.

We set this derivative to 0 to solve for Bs+1 = (ab−ac)P ′s+(a−b)c
(c−b)P ′

s2
+(b−c)2P ′s+a−b . As b > c > a,

the second derivative 2(c−b)(1−P ′s)2+2(a−c)
(b−a)(b−c)(c−a) must always be negative, such that the extreme

point is a maximum. Therefore, F (X) decreases as Bs+1 moves in either direction from

this value. �

The one exception to these results would be a situation where both b
2−P ′s

and c
1−P ′s

are

greater than (ab−ac)P ′s+(a−b)c
(c−b)P ′

s2
+(b−c)2P ′s

, while b
2−P ′s

> c
1−P ′s

. This is represented in Figure 13. Part 2 of

the Theorem indicates that the bound should decrease from b
2−P ′s

to decrease F (X), while part

3 indicates that the bound should increase from (ab−ac)P ′s+(a−b)c
(c−b)P ′

s2
+(b−c)2P ′s

. The conditions for both parts

meet at c
1−P ′s

. However, it can be shown computationally that these conditions can never occur

simultaneously, such that (ab−ac)P ′s+(a−b)c
(c−b)P ′

s2
+(b−c)2P ′s

can never be less than both b
2−P ′s

and c
1−P ′s

.
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